

Paper Reading

周争光

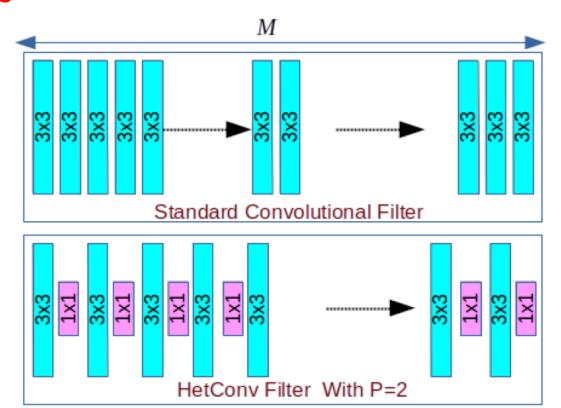
Paper

- □ HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs, CVPR, 2019
- Drop an Octave: Reducing Spatial Redundancy inConvolutional Neural Networks with Octave Convolution
- ☐ EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

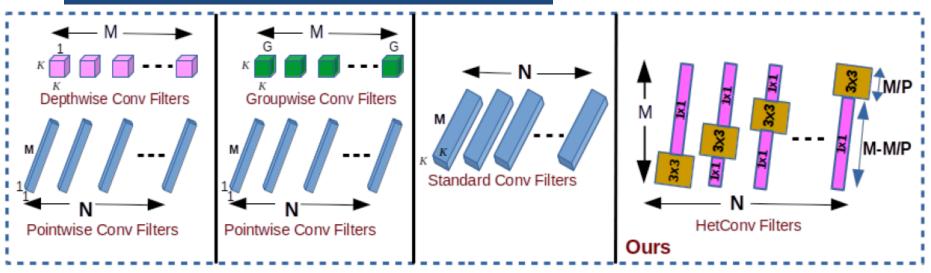
Paper

- □ HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs, CVPR, 2019
- Drop an Octave: Reducing Spatial Redundancy in
 Convolutional Neural Networks with Octave Convolution
- ☐ EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, ICML, 2019

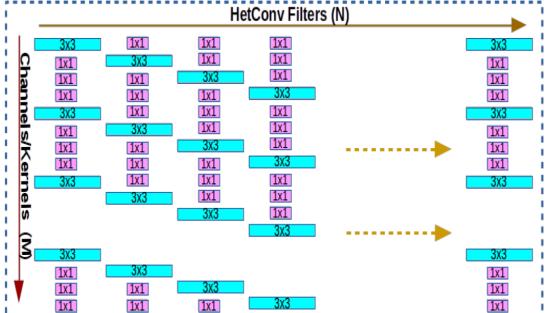
- Reduce the FLOPs of the given model/architecture by designing new kernels
- Homogeneous: each kernel is of the same size
- Heterogeneous: contains different sizes of kernels



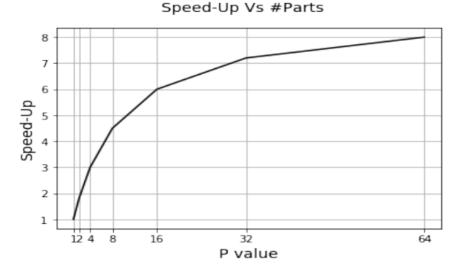
5



☐ Filters



- Standard conv: $FL_S = D_o \times D_o \times M \times N \times K \times K$
- ☐ HetConv with part P:
 - **KxK**: $FL_K = (D_o \times D_o \times M \times N \times K \times K)/P$
 - 1x1 $FL_1 = (D_o \times D_o \times N) \times \left(M \frac{M}{P}\right)$
- □ Total reduction: $R_{HetConv} = \frac{FL_K + FL_1}{FL_S}$
- Speed-up $=\frac{1}{P} + \frac{(1-1/P)}{K^2}$



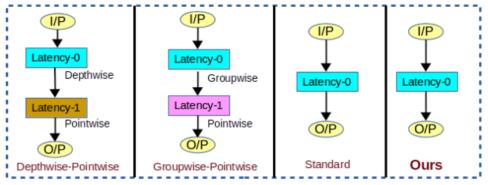


Figure 4. The figure shows the comparison with the different types of convolution in terms of latency.

□ VGG-16 on CIFAR10

Model	Acc%	FLOPs	FLOPs Reduced (%)	Parameters	Parameters Reduced (%)
VGG-16_P1	94.06	313.74M	_	15.00M	_
VGG-16_P1_SE	94.13	314.19M	_	15.22M	_
VGG-16_P2	93.89	175.23M	44.15	8.45M	43.68
VGG-16_P2_SE	94.11	175.67M	44.00	8.68M	42.99
VGG-16_P4	93.93	105.98M	66.22	5.17M	65.45
VGG-16_P4_SE	94.29	106.42M	66.08	5.41M	64.48
VGG-16_GWC4_PWC	92.76	107.67M	65.68	5.42M	_
VGG-16_P8	93.92	71.35M	77.26	3.54M	76.40
VGG-16_P8_SE	93.97	71.79M	77.12	3.77M	75.22
VGG-16_P16	93.96	54.04M	82.78	2.72M	81.86
VGG-16_P16_SE	93.63	54.48M	82.64	2.95M	80.59
VGG-16_P32	93.73	45.38M	85.54	2.31M	84.58
VGG-16_P32_SE	93.41	45.82M	85.39	2.54M	83.28
VGG-16_P64	93.42	41.05M	86.92	2.11M	85.95
VGG-16_P64_SE	93.33	41.49M	86.77	2.34M	84.63
VGG-16_DWC_PWC	91.27	38.53M	87.72	1.97M	_
VGG-16_PC	92.53	38.18M	87.83	1.93M	_
VGG-16_PC_SE	93.08	38.62M	87.69	2.15M	_

Table 1. The table shows the detail results for VGG-16 on CIFAR-10 in different setups.

ImageNet

Method	Acc%(Top-1)	Acc%(Top-5)	FLOPs Reduced %
RNP (3X)[22]	_	87.57	66.67
ThiNet-70 [24]	69.8	89.53	69.04
CP 2X [11]	_	89.90	50.00
VGG-16_P1	71.3	90.2	_
VGG-16_P4	71.2	90.2	65.8

Table 5. Table shows the results for the VGG-16 on ImageNet [29]. Our model has no loss in accuracy as compare to state-of-art [11, 24] pruning approaches while significantly higher FLOPs reduction.

Method	Error (top-1)%	FLOPs	FLOPs Reduced(%)
ThiNet-70 [24]	27.90	_	36.8
NISP [41]	27.33	_	27.31
ResNet-50_P1	23.86	4.09G	_
ResNet-50_P4	23.84	2.85G	30.32

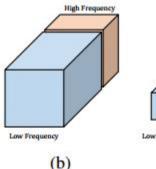
Table 7. Table shows the results for ResNet-50 on ImageNet [29]. Our model has no loss in accuracy as compare to state-of-art [24, 41] flop pruning approaches.

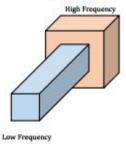
Paper

- ☐ HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs, CVPR, 2019
- Drop an Octave: Reducing Spatial Redundancy in
 Convolutional Neural Networks with Octave Convolution
- ☐ EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, ICML, 2019

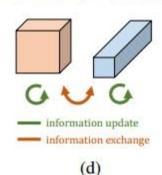
- ☐ The output maps of a convolutional layer can also be factorized and grouped by their spatial frequency.
- ☐ OctConv focuses on reducing the spatial redundancy in CNNs and is designed to replace vanilla convolution operations.

(a) Separating the low and high spatial frequency signal [1, 10].



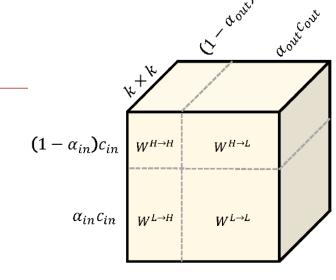


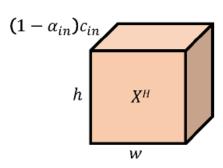
(c)

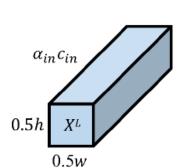


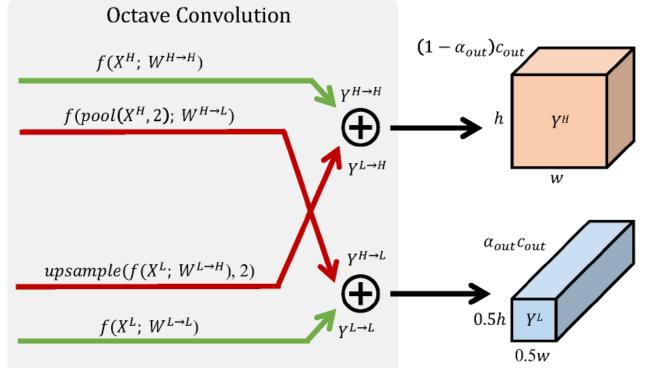
Implementation Details

$$\begin{split} \boldsymbol{Y}^{H} = & f(\boldsymbol{X}^{H}; \boldsymbol{W}^{H \rightarrow H}) + \mathtt{upsample}(f(\boldsymbol{X}^{L}; \boldsymbol{W}^{L \rightarrow H}), \\ \boldsymbol{Y}^{L} = & f(\boldsymbol{X}^{L}; \boldsymbol{W}^{L \rightarrow L}) + f(\mathtt{pool}(\boldsymbol{X}^{H}, 2); \boldsymbol{W}^{H \rightarrow L})), \end{split}$$

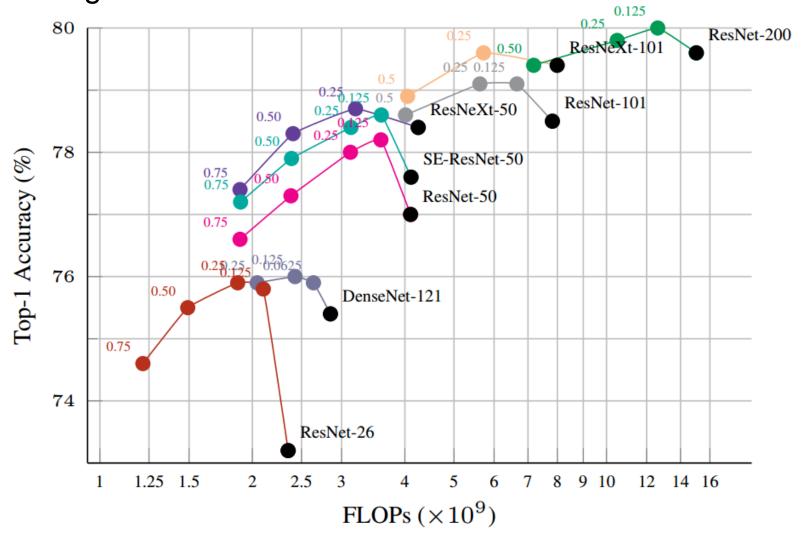








☐ ImageNet



□ ImageNet

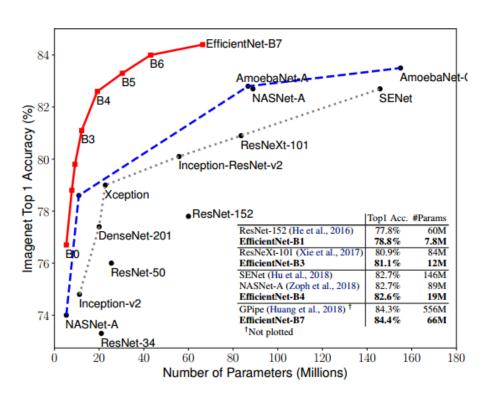
ratio (α)		Testing Scale ($small \rightarrow large$)								
	256	320	384	448	512	576	640	740		
N/A	77.2	78.6	78.7	78.7	78.3	77.6	76.7	75.8		
.5	+0.7	+0.7	+0.9	+0.9	+0.8	+1.0	+1.1	+1.2		

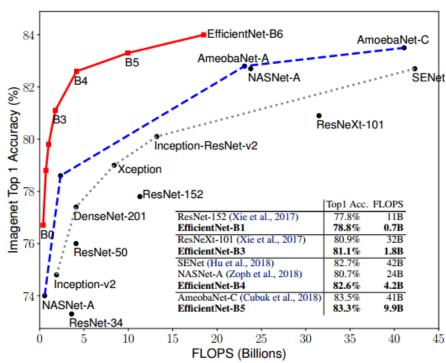
Method	ratio (α)	#Params (M)	#FLOPs (M)	CPU (ms)	Top-1 (%)
CondenseNet $(G = C = 8)$ [21]	-	2.9	274	-	71.0
1.5 ShuffleNet (v1) [50]	-	3.4	292	-	71.5
1.5 ShuffleNet (v2) [32]	-	3.5	299	-	72.6
0.75 MobileNet (v1) [18]	-	2.6	325	13.4	70.3*
0.75 Oct-MobileNet (v1) (ours)	.375	2.6	213	11.9	70.6
1.0 Oct-MobileNet (v1) (ours)	.5	4.2	321	18.4	72.4
1.0 MobileNet (v2) [34]	-	3.5	300	24.5	72.0
1.0 Oct-MobileNet (v2) (ours)	.375	3.5	256	17.1	72.0
1.125 Oct-MobileNet (v2) (ours)	.5	4.2	295	26.3	73.0

Paper

- ☐ HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs, CVPR, 2019
- Drop an Octave: Reducing Spatial Redundancy in
 Convolutional Neural Networks with Octave Convolution
- ☐ EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, ICML, 2019

- Uniformly scales depth/width/resolution.
- New SOTA 84.4% top-1 accuracy.





Compound scaling method

$$\mathcal{N} = \bigodot_{i=1}^{L_i} \mathcal{F}_i^{L_i} (X_{\langle H_i, W_i, C_i \rangle}) \xrightarrow{\text{max}} Accuracy (\mathcal{N}(d, w, r))$$

$$s.t. \hspace{0.5cm} \mathcal{N}(d,w,r) = \bigodot_{i=1...s} \hat{\mathcal{F}}_i^{d\cdot \hat{L}_i} \left(X_{\langle r\cdot \hat{H}_i,r\cdot \hat{W}_i,w\cdot \hat{C}_i\rangle} \right)$$

 $Memory(\mathcal{N}) \leq target_memory$

 $FLOPS(\mathcal{N}) \leq target_flops$

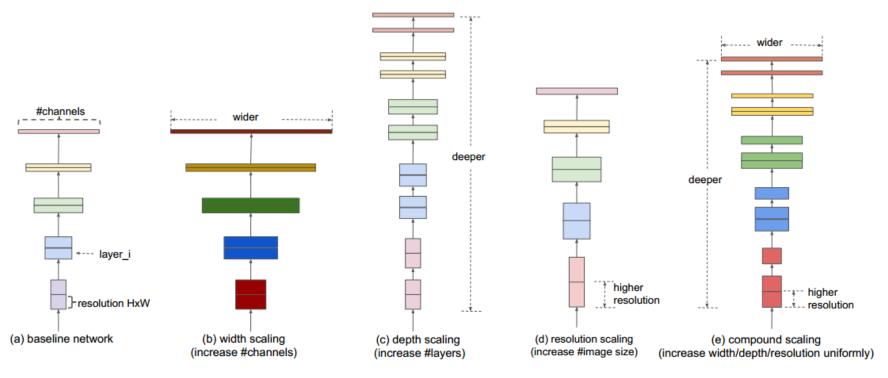
depth: $d = \alpha^{\phi}$

width: $w = \beta^{\phi}$

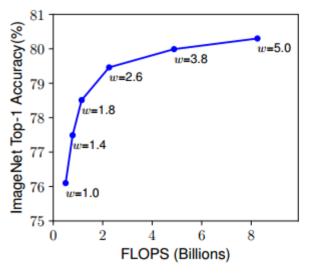
resolution: $r = \gamma^{\phi}$

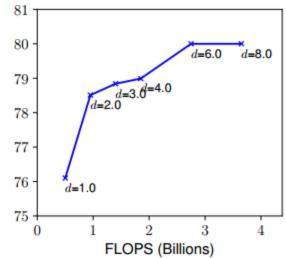
s.t.
$$\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$$

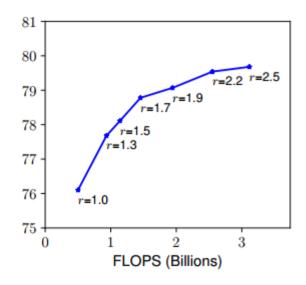
$$\alpha \geq 1, \beta \geq 1, \gamma \geq 1$$



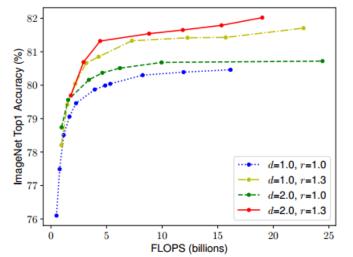
□ Single dimension scaling







Scaling Network Width for Different Baseline



□ Scaling Up MobileNets and ResNets

Table 3. Scaling Up MobileNets and ResNet.

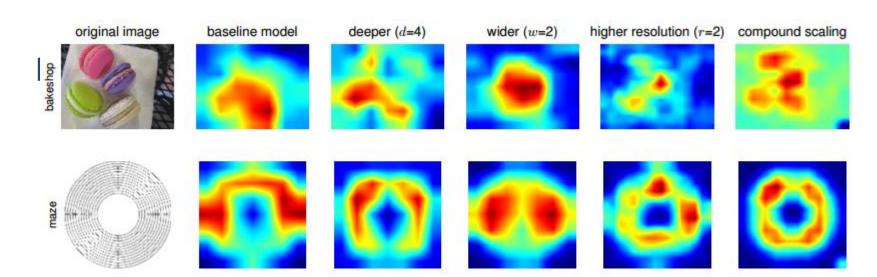
Model	FLOPS	Top-1 Acc.
Baseline MobileNetV1 (M1)	0.6B	70.6%
Scale M1 width (w=2)	2.2B	74.2%
Scale M1 resolution $(r=2)$	2.2B	72.7%
M1 compound scale (<i>d</i> =1.4, <i>w</i> =1.2, <i>r</i> =1.3)	2.3B	75.6%
Baseline MobileNetV2	0.3B	72.0%
Scale MobileNetV2 depth (d=4)	1.2B	76.8%
Scale MobileNetV2 width (w=2)	1.1B	76.4%
Scale MobileNetV2 resolution $(r=2)$	1.2B	74.8%
MobileNetV2 compound scale	1.3B	77.4%
Baseline ResNet-50	4.1B	76.0%
Scale ResNet-50 depth (d=4)	16.2B	78.1%
Scale ResNet-50 width (w =2)	14.7B	77.7%
Scale ResNet-50 resolution $(r=2)$	16.4B	77.5%
ResNet-50 compound scale	16.7B	78.8%

Model	Top-1 Acc.	Top-5 Acc.	#Params	Ratio-to-EfficientNet	#FLOPS	Ratio-to-EfficientNet
EfficientNet-B0	76.3%	93.2%	5.3M	1x	0.39B	1x
ResNet-50 (He et al., 2016)	76.0%	93.0%	26M	4.9x	4.1B	11x
DenseNet-169 (Huang et al., 2017)	76.2%	93.2%	14M	2.6x	3.5B	8.9x
EfficientNet-B1	78.8%	94.4%	7.8M	1x	0.70B	1x
ResNet-152 (He et al., 2016)	77.8%	93.8%	60M	7.6x	11B	16x
DenseNet-264 (Huang et al., 2017)	77.9%	93.9%	34M	4.3x	6.0B	8.6x
Inception-v3 (Szegedy et al., 2016)	78.8%	94.4%	24M	3.0x	5.7B	8.1x
Xception (Chollet, 2017)	79.0%	94.5%	23M	3.0x	8.4B	12x
EfficientNet-B2	79.8%	94.9%	9.2M	1x	1.0B	1x
Inception-v4 (Szegedy et al., 2017)	80.0%	95.0%	48M	5.2x	13B	13x
Inception-resnet-v2 (Szegedy et al., 2017)	80.1%	95.1%	56M	6.1x	13B	13x
EfficientNet-B3	81.1%	95.5%	12M	1x	1.8B	1x
ResNeXt-101 (Xie et al., 2017)	80.9%	95.6%	84M	7.0x	32B	18x
PolyNet (Zhang et al., 2017)	81.3%	95.8%	92M	7.7x	35B	19x
EfficientNet-B4	82.6%	96.3%	19M	1x	4.2B	1x
SENet (Hu et al., 2018)	82.7%	96.2%	146M	7.7x	42B	10x
NASNet-A (Zoph et al., 2018)	82.7%	96.2%	89M	4.7x	24B	5.7x
AmoebaNet-A (Real et al., 2019)	82.8%	96.1%	87M	4.6x	23B	5.5x
PNASNet (Liu et al., 2018)	82.9%	96.2%	86M	4.5x	23B	6.0x
EfficientNet-B5	83.3%	96.7%	30M	1x	9.9B	1x
AmoebaNet-C (Cubuk et al., 2018)	83.5%	96.5%	155M	5.2x	41B	4.1x
EfficientNet-B6	84.0%	96.9%	43M	1x	19B	1x
EfficientNet-B7	84.4%	97.1%	66M	1x	37B	1x
GPipe (Huang et al., 2018)	84.3%	97.0%	557M	8.4x	-	-

We omit ensemble and multi-crop models (Hu et al., 2018), or models pretrained on 3.5B Instagram images (Mahajan et al., 2018).

- □ Results on Transfer Learning Datasets
 - achieve new state-of-the-art accuracy for 5 out of 8 datasets

	Comparison to best public-available results					Comparison to best reported results						
	Model	Acc.	#Param	Our Model	Acc.	#Param(ratio)	Model	Acc.	#Param	Our Model	Acc.	#Param(ratio)
CIFAR-10	NASNet-A	98.0%	85M	EfficientNet-B0	98.1%	4M (21x)	†Gpipe	99.0%	556M	EfficientNet-B7	98.9%	64M (8.7x)
CIFAR-100	NASNet-A	87.5%	85M	EfficientNet-B0	88.1%	4M (21x)	Gpipe	91.3%	556M	EfficientNet-B7	91.7%	64M (8.7x)
Birdsnap	Inception-v4	81.8%	41M	EfficientNet-B5	82.0%	28M (1.5x)	GPipe	83.6%	556M	EfficientNet-B7	84.3%	64M (8.7x)
Stanford Cars	Inception-v4	93.4%	41M	EfficientNet-B3	93.6%	10M (4.1x)	‡DAT	94.8%	-	EfficientNet-B7	94.7%	-
Flowers	Inception-v4	98.5%	41M	EfficientNet-B5	98.5%	28M (1.5x)	DAT	97.7%	-	EfficientNet-B7	98.8%	-
FGVC Aircraft	Inception-v4	90.9%	41M	EfficientNet-B3	90.7%	10M (4.1x)	DAT	92.9%	-	EfficientNet-B7	92.9%	-
Oxford-IIIT Pets	ResNet-152	94.5%	58M	EfficientNet-B4	94.8%	17M (5.6x)	GPipe	95.9%	556M	EfficientNet-B6	95.4%	41M (14x)
Food-101	Inception-v4	90.8%	41M	EfficientNet-B4	91.5%	17M (2.4x)	GPipe	93.0%	556M	EfficientNet-B7	93.0%	64M (8.7x)
Geo-Mean						(4.7x)						(9.6x)



Thanks!